Unit 5 notes
Turing machine:

Informal Definition:

We consider here a basic model of TM which is deterministic and have one-tape. There are many variations, all
are equally powerfull.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell but is infinite to the
right and a tape head that can move left and right over the tape, reading and writing symbols.

For any input w with |w|=n, initially it is written on the n leftmost (continguous) tape cells. The infinitely many
cells to the right of the input all contain a blank symbol, B whcih is a special tape symbol that is not an input
symbol. The machine starts in its start state with its head scanning the leftmost symbol of the input w. De-
pending upon the symbol scanned by the tape head and the current state the machine makes a move which
consists of the following:

e writes a new symbol on that tape cell,
moves its head one cell either to the left or to the right and
e (possibly) enters a new state.

The action it takes in each step is determined by a transition functions. The machine continues computing (i.e.
making moves) until

e it decides to "accept" its input by entering a special state called accept or final state or
e halts without accepting i.e. rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting the input, in which
case it is said to "loop" on that input

Formal Definition :

M=(0.5T,5.4,8 F)

Formally, a deterministic turing machine (DTM) is a 7-tuple , Where

e Qis afinite nonempty set of states.
o lisafinite non-empty set of tape symbols, callled the tape alphabet of M.
el is a finite non-empty set of input symbols, called the input alphabet of M.

o=l = OxTx{ L= K]

is the transition function of M,

e
o o & is the initial or start state.

o B el Ejsthe blank symbol
. Fog is the set of final state.

So, given the current state and tape symbol being read, the transition function describes the next state, symbol
to be written on the tape, and the direction in which to move the tape head (L and R denote left and right,
respectively).

Transition function :5

e The heart of the TM is the transition function, & pecause it tells us how the machine gets one step to
the next.

¢ when the machine is in a certain state q© and the head is currently scanning the tape symbol
A€l andif dlg.x) =(p. 7. 0) , then the machine

1. replaces the symbol X by Y on the tape
goes to state p, and
3. the tape head moves one cell (i.e. one tape symbol) to the left (or right) if Dis L (or R).

n

The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it contains all the
information to exactly capture the "current state of the computations".

It contains the following:

e The current state, q
e The position of the tape head,

e The constants of the tape up to the rightmost nonblank symbol or the symbol to the left of the head,
whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank symbols on the
tape, at any finite

time, the TM has visited only a finite prefix of the infinite tape.

An ID (or configuration) of a TM M is denoted by mﬂgwhere @ Bel and

e it jsthe tape contents to the left of the head
e (is the current state.

. ﬁis the tape contents at or to the right of the tape head

That is, the tape head is currently scanning the leftmost tape symbol of “8 (Note that if B=e , then the tape
head is scanning a blank symbol)

If 90is the start state and w is the input to a TM M then the starting or initial configuration of M is onviously

denoted by do¥

Moves of Turing Machines

To indicate one move we use the symbol = Similarly, zero, one, or more moves will be represented by = A
move of a TM

M is defined as follows.

Let ngXﬁbeanlDowahere X,ZEI"’ a,8el andgEQ.

Let there exists a transition 5[@',}{) B [p,}’,;f.:l of M.

Then we write QLGA B - 5 GgZY B meaning that ID gzq‘rfﬁyields aZgl 8

e Alternatively , if blg. %) =(p.7.R) is a transition of M, then we write %244 8 1 @zlp f

means that the 1D azg i 8 yields azlp 8

which

e In other words, when two IDs are related by the relation = we say that the first one yields the second
(‘or the second is the result of the first) by one move.

e |f IDj results from IDi by zero, one or more (finite) moves then we write l_(If the TM M is understand,
then the subscript M can be dropped from For l_)

Special Boundary Cases

] =(p,F, L
o Let ¥ %peaniD and lg.%) [p, ’)
allowed to fall off the left end of the tape.

o Let ¥ %peaniD and dlg.x) = I[p,l’", li?')then figure (Note that aiy is equivalent to
ﬁ[q,x) - Ii‘{Z}’B’R)then figure

d{g.x)=(p.B.L]

be an transition of M. Then . That is, the head is not

afgf)

Grey

o Let be an ID and

ot E2GX

e L be an ID and then figure

M=(0,%T,5,4,8F)

The language accepted by a TM , denoted as L(M) is

L(M)={w]| wez and figure for some p=F and a fel }

In other words the TM M accepts a string ¥ < Z that cause M to enter a final or accepting state when started

*
in its initial ID (i.e. Eirl3'W). That is a TM M accepts the string ¥ = Zifa sequence of IDs,

A0y, 1Dy, 1D exists such that

E

i

. lis the initial or starting ID of M
Doy el 125 <k

e The representation of IDk contains an accepting state.

The set of strings that M accepts is the language of M, denoted L(M), as defined above

More about configuration and acceptance

e AniD &gﬁof M is called an accepting (or final) ID if gEF

Alg.x
e AniID &gxﬁis called a blocking (or halting) ID if [q’)is undefined i.e. the TM has no move at this

point.

. ID-?' is called reactable from 1D, if 1D e D i)

o YWis the initial (or starting) ID if W& z is the input to the TM and e is the initial (or start) state

of M.

On any input string W€

either

e M halts on W if there exists a blocking (configuration) ID, ¥ such that oW e I

There are two cases to be considered

e M accepts W if | is an accepting ID. The setof all W& 2 accepted by M is denoted as L(M) as

already defined

e Mrejects W if Tisa blocking configuration. Denote by reject (M), the setof all W= z rejected by M.

or

e M loops on W if it does not halt on w.

Let loop(M) be the set of all ¥ Z on which M loops for.

It is quite clear that

L)

L[M) L rejecﬁ[M) L .-:’-::-.::p[M) =
That is, we assume that a TM M halts

e When it enters an accepting iy or

e When it enters a blocking = i.e. when there is no next move.

wet LIM)

However, on some input string, ,

, it is possible that the TM M loops for ever i.e. it never halts

The Halting Problem

The input to a Turing machine is a string. Turing machines themselves can be written as

strings. Since these strings can be used as input to other Turing machines. A “Universal Turing
machine” is one whose input consists of a description M of some arbitrary Turing machine, and
some input w to which machine M is to be applied, we write this combined input as M + w. This
produces the same output that would be produced by M. This is written as

Universal Turing Machine (M +w) = M (w).

As a Turing machine can be represented as a string, it is fully possible to supply a Turing

machine as input to itself, for example M (M). This is not even a particularly bizarre thing to do for
example, suppose you have written a C pretty printer in C, then used the Pretty printer on itself.
Another common usage is Bootstrapping—where some convenient languages used to write a
minimal compiler for some new language L, then used this minimal compiler for L to write a new,
improved compiler for language L. Each time a new feature is added to language L, you can
recompile and use this new feature in the next version of the compiler. Turing machines sometimes
halt, and sometimes they enter an infinite loop.

A Turing machine might halt for one input string, but go into an infinite loop when given

some other string. The halting problem asks: “It is possible to tell, in general, whether a given
machine will halt for some given input?” If it is possible, then there is an effective procedure to look
at a Turing machine and its input and determine whether the machine will halt with that input. If
there is an effective procedure, then we can build a Turing machine to implement it. Suppose we
have a Turing machine “WillHalt” which, given an input string M + w, will halt and accept the string
if Turing machine M halts on input w and will halt and reject the string if Turing machine M does not
halt on input w. When viewed as a Boolean function, “WillHalt (M, w)” halts and returns “TRUE” in
the first case, and (halts and) returns “FALSE” in the second.

Theorem

Turing Machine “WillHalt (M, w)” does not exist.

Proof: This theorem is proved by contradiction. Suppose we could build a machine “WillHalt”.
Then we can certainly build a second machine, “LoopIfHalts”, that will go into an infinite loop if
and only if “WillHalt” accepts its input:

Function LoopIfHalts (M, w):

if WillHalt (M, w) then

while true do { }

else

return false;

We will also define a machine “LoopIfHaltOnltSelf” that, for any given input M, representing a
Turing machine, will determine what will happen if M is applied to itself, and loops if M will halt in
this case.

Function LoopIfHaltsOnItself (M):

return LoopIfHalts (M, M):

Finally, we ask what happens if wetry:

Func tion Impos sible:

return LoopIlfHaltsOnItself (LoopIlfHaltsOnItself):

This machine, when applied to itself, goes into an infinite loop if and only if it halts when
applied to itself. This is impossible. Hence the theorem is proved.

Will this
program
halt?

Implications of Halting Problem

Programming

The Theorem of “Halting Problem” does not say that we can never determine whether or not

a given program halts on a given input. Most of the times, for practical reasons, we could eliminate
infinite loops from programs. Sometimes a “meta-program” is used to check another program for
potential infinite loops, and get this meta-program to work most of the time.

The theorem says that we cannot ever write such a meta-program and have it work all of the
time. This result is also used to demonstrate that certain other programs are also impossible.

The basic outline is as follows:

(i) If we could solve a problem X, we could solve the Halting problem

(if) We cannot solve the Halting Problem

(iii) Therefore, we cannot solve problem X

A Turing machine can be "programmed,” in much the same manner as a computer is
programmed. When one specifies the function which we usually call & for a Tm, he is really writing
a program for the Tm.

1. Storage in finite Control

The finite control can be used to hold a finite amount of information. To do so, the state is

written as a pair of elements, one exercising control and the other storing a symbol. It should be
emphasized that this arrangement is for conceptual purposes only. No modification in the definition
of the Turing machine has been made.

Example

Consider the Turing machine

Solution

T= (Ks {B: I}s {Oa l: B}: 8: [qﬂa B}: F)>

where K can be written as {gq,¢1} x {0,1, B}. That is, K consists of the
pairs [go, 0], (g0, 11, [40, B], [41, 0], [¢1, 1], and [g;, B]. The set F is {[g:, B]}.
T looks at the first input symbol, records it in its finite control, and checks
that the symbol does not appear elsewhere on its input. The second com-
ponent of the state records the first input symbol. Note that T accepts a
regular set, but T will serve for demonstration purposes. We define 8 as
follows.

1' a) 8(['?09 B]s 0) = ([QD 0]3 09 R)
b) 8([go, B], 1) = (lg1, 1. 1, R)
(T stores the symbol scanned in second component of the state and moves
right. The first component of T7s state becomes ¢;.)

2' ﬂ.) a([?la 0]& 1) = ([Qh 0]& 19 -R)
b) a{[qls]]9 0) = ([Q‘ls l]s 0! R)
(If T"has a 0 stored and sees a 1, or vice versa, then 7 continues to move
to the right.)

3. a) 8([¢:, 0], B) = ([g1, B0, L)
b} S({qls 1]& B) = ([‘?13 B]: 0: L)
(T enters the final state [gy, B] if T reaches a blank symbol without
having first encountered a second copy of the leftmost symbol.)

If T reaches a blank in state [¢qy, 0] or [gy, 1], it accepts. For state [g¢,, 0]
and symbol 0 or for state [g,, 1] and symbol 1, & is not defined, so if T ever
sees the symbol stored, it halts without accepting.

In general, we can allow the finite control to have k components, all but
one of which store information,

2. Multiple Tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k. This
arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the tape are
considered as k-tuples. One component for each track.

Example

The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input

greater than 2, written on the first track, and determines if it is a prime. The input is surrounded by ¢
and $ on the first track.

Thus, the allowable input symbols are [¢, B, B], [0, B, B], [1, B, B], and [$, B, B]. These

symbols can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The blank

symbol can be represented by [B, B, B]

To test if its input is a prime, the Tm first writes the number two in binary on the second track

and copies the first track onto the third track. Then, the second track is subtracted, as many times as
possible, from the third track, effectively dividing the third track by the second and leaving the
remainder. If the remainder is zero, the number on the first track is not a prime. If the remainder is
nonzero, increase the number on the second track by one.

If now the second track equals the first, the number on the first track is a prime, because it cannot
be divided by any number between one and itself. If the second is less than the first, the whole
operation is repeated for the new number on the second track. In Fig., the Tm is testing to determine

if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so 37 appears on the
third track.

3. Subroutines

VII. SUBROUTINES. It is possible for one Turing machine to be a *““sub-
routine” of another Tm under rather general conditions. If 7; is to be a
subroutine of T, we require that the states of 7} be disjoint from the states
of T, (excluding the states of Ty’s subroutine). To “call” T,, T, enters the
start state of 7;. The rules of 7} are part of the rules of T,. In addition,
from a halting state of Ty, T, enters a state of its own and proceeds.

UNDECIDABILITY

Design a Turing machine to add two given integers.
Solution:

Assume that m and n are positive integers. Let us represent the input as 0" B0".
If the separating B 1s removed and 0’s come together we have the required
output, m + 7 is unary.

(1) The separating B 1s replaced by a 0.
(11) The rightmost 0 is erased i.e., replaced by B.

Let us define M = ({g9-91-92-95-94}-{0}.{0,B}.0.9,.{q,}). O is
defined by Table shown below.

Tape Symbol

State 0 B
o (99.0.R) (¢,.0.R)
4, (¢,.0.R) (¢,.B.L)
q> (¢5.B8.L) —
45 (¢;.0.L) (q4.B.R)

M starts from ID ¢,0™ B0", moves right until seeking the blank B. M

changes state to ¢,. On reaching the right end. 1t reverts, replaces the rightmost
0 by B. It moves left until it reaches the beginning of the input string. It halts at
the final state g,.

Some unsolvable Problems are as follows:

(i) Does a given Turing machine M halts on all input?

(ii) Does Turing machine M halt for any input?

(iii) Is the language L(M) finite?

(iv) Does L(M) contain a string of length k, for some given k?

(v) Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing machine M
and input string w, whether or not M accepts w. These problems for which no algorithms exist are
called “UNDECIDABLE” or “UNSOLVABLE”.

Code for Turing Machine:

Our next goal is to devise a binary code for Turing machines so that each TM
with input alphabet {0, 1} may be thought of as a binary string. Since we just
saw how to enumerate the binary strings, we shall then have an identification of
the Turing machines with the integers, and we can talk about “the ith Turing
machine, M;.” To represent a TM M = (Q,{0,1},T,4,q1, B, F') as a binary
string, we must first assign integers to the states, tape symbols, and directions
L and R.

e We shall assume the states are q1,qz,---,¢r for some r. The start state
will always be ¢, and g will be the only accepting state. Note that, since
we may assume the TM halts whenever it enters an accepting state, there
is never any need for more than one accepting state.

e We shall assume the tape symbols are X;,X>,..., X, for some s. X,
always will be the symbol 0, X, will be 1, and X3 will be B, the blank.
However, other tape symbols can be assigned to the remaining integers
arbitrarily.

e We shall refer to direction L as D; and direction R as Ds.

Since each TM M can have integers assigned to its states and tape symbols in
many different orders, there will be more than one encoding of the typical TM.
However, that fact is unimportant in what follows, since we shall show that no
encoding can represent a TM M such that L(M) = Lg.

Once we have established an integer to represent each state, symbol, and
direction, we can encode the transition function §. Suppose one transition rule
is d(qi, X;) = (gx, X1, D), for some integers ¢, j, k, I, and m. We shall code
this rule by the string 0:110910¥10'10™. Notice that, since all of ¢, j, k, I, and m
are at least one, there are no occurrences of two or more consecutive 1’s within
the code for a single transition.

A code for the entire TM M consists of all the codes for the transitions, in
some order, separated by pairs of 1’s:

Ci111C511---C,,—111C,,

where each of the C’s is the code for one transition of M.

Diagonalization language:

o The language Lg, the diagonalization language, is the set of strings w;
such that w; is not in L(M;).

That is, Lq consists of all strings w such that the TM M whose code is w does
not accept when given w as input.

The reason Ly is called a “diagonalization” language can be seen if we
consider Fig. 9.1. This table tells for all ¢ and j, whether the TM M; accepts
input string w;; 1 means “yes it does” and 0 means “no it doesn’t.”! We may
think of the ith row as the characteristic vector for the language L(M;); that
is, the 1’s in this row indicate the strings that are members of this language.

] —
1 2 3 4
1 loNd 10
2 [1NaN\o 0
o3 lo oNe\g
l40101

Diagonal

This table represents language acceptable by Turing machine

The diagonal values tell whether M; accepts w;. To construct L4, we com-
plement the diagonal. For instance, if Fig. 9.1 were the correct table, then
the complemented diagonal would begin 1,0,0,0,... . Thus, Ly would contain
w, = €, not contain wo through wy, which are 0, 1, and 00, and so on.

The trick of complementing the diagonal to construct the characteristic
vector of a language that cannot be the language that appears in any row,
is called diagonalization. It works because the complement of the diagonal is

Proof that L is not recursively enumerable:

Theorem 9.2: Ly is not a recursively enumerable language. That is, there is
no Turing machine that accepts L.

PROOF: Suppose Lq were L(M) for some TM M. Since L, is a language over
alphabet {0, 1}, M would be in the list of Turing machines we have constructed,
since it includes all TM’s with input alphabet {0,1}. Thus, there is at least
one code for M, say i; that is, M = M,;.

NOW, ask if w; is in Lg.

® .If w; is in Lg, then M; accepts w;. But then, by definition of L4, w; is not
in Lq, because Ly contains only those w; such that M; does not accept
wj.

e Similarly, if w; is not in Lg, then M; does not accept w;, Thus, by defini-
tion of Ly, w; isin Ly.

Since w; can neither be in Ly nor fail to be in Ly, we conclude that there is a
contradiction of our assumption that M exists. That is, L, is not a recursively
enumerable language. O

Recursive Languages:
We call a language L recursive if L = L(M) for some Turing machine M such
that:

1. If wis in L, then M accepts (and therefore halts).

2. If w is not in L, then M eventually halts, although it never enters an
accepting state.

A TM of this type corresponds to our informal notion of an “algorithm,” a
well-defined sequence of steps that always finishes and produces an answer.
If we think of the language L as a “problem,” as will be the case frequently,
then problem L is called decidable if it is a recursive language, and it is called
undecidable if it is not a recursive language.

Theorem 9.3: If L is a recursive language, so is L.

PROOF: Let L = L(M) for some TM M that always halts. We construct a TM
M such that I = L(M) by the construction suggested in Fig. 9.3. That is, M
behaves just like M. However, M is modified as follows to create M:

1. The accepting states of M are made nonaccepting states of M with no
transitions; i.e., in these states M will halt without accepting.

2. M has a new accepting state r; there are no transitions from 7.

3. For each combination of a nonaccepting state of M and a tape symbol of
M such that M has no transition (i.e., M halts without accepting), add
a transition to the accepting state r.

r—-— A
P N e
— Reject i

Reject

Since M is guaranteed to halt, we know that M is also guaranteed to halt.

Moreover, M accepts exactly those strings that M does not accept. Thus M
accepts L. O

Theoyem 9.4: If both a language L and its complement are RE, then L is
recursive. Note that then by Theorem 9.3, L is recursive as well.

PROOF: The proof is suggested by Fig. 9.4. Let L = L(M;) and T = L(M>).
Both M; and M, are simulated in parallel by a TM M. We can make M a
two-tape TM, and then convert it to a one-tape TM, to make the simulation
easy and obvious. One tape of M simulates the tape of M, while the other tape
of M simulates the tape of M;. The states of M; and Mj; are each components
of the state of M.

—™ Accept —™ Accept

— Accept — Reject

Figure 9.4: Simulation of two TM’s accepting a language and its complement

If input w to M is in L, then M; will eventually accept. If so, M accepts
and halts. If w is not in L, then it is in L, so My will eventually accept. When
M, accepts, M halts without accepting. Thus, on all inputs, M halts, and

L(M) is exactly L. Since M always halts, and L(M) = L, we conclude that L
is recursive. O

Universal
Language:

We define L., the universal language, to be the set of binary strings that
encode, in the notation of Section 9.1.2, a pair (M, w), where M is a TM with
the binary input alphabet, and w is a string in (0+ 1)*, such that w is in L(M).
That is, Ly is the set of strings representing a TM and an input accepted by
that TM. We shall show that there is a TM U, often called the universal Turing
machine, such that L, = L(U). Since the input to U is a binary string, Uis
in fact some M; in the list of binary-input Turing machines we developed in

Undecidability of Universal Language:

Theorem 9.6: L, is RE but not recursive.

PROOF: We just proved in Section 9.2.3 that L, is RE. Suppose L, were
recursive. Then by Theorem 9.3, I, the complement of L,, would also be
recursive. However, if we have a TM M to accept L, then we can construct a
TM to accept Lg (by a method explained below). Since we already know that
Ly is not RE, we have a contradiction of our assumption that L, is recursive.

Hypothetical — Accept —— Accept
w — | Copy ™ wlllw -= algorithm
Mfor L | w Reject —— Reject
M’ for L,

Figure 9.6: Reduction of Ly to L,

Suppose L(M) = L,. As suggested by Fig. 9.6, we can modify TM M into
a TM M’ that accepts Ly as follows.

1. Given string w on its input, M’ changes the input to wlllw. You may,
as an exercise, write a TM program to do this step on a single tape.
However, an easy argument that it can be done is to use a second tape to
copy w, and then convert the two-tape TM to a one-tape TM.

9. M’ simulates M on the new input. If w is w; in our enumeration, then
M determines whether M; accepts w;. Since M accepts Ly, it will accept
if and only if M; does not accept w;; i.e., w; is in Lg.

Thus, M’ accepts w if and only if w is in Lg. Since we know M' cannot exist
by Theorem 9.2, we conclude that L, is not recursive. U

Problem -Reduction :
If P, reduced to Py,
Then P, is at least as hard as P;.
Theorem: If P; reduces to P, then,
e If Py is undecidable the so is P,.
e |f Py is Non-RE then so is P,.

Post's Correspondence Problem (PCP)

. . o xL), =12,
A post correspondence system consists of a finite set of ordered pairs Ii : y‘)

LM EZ

" where

for some alphabet z

By, W0, & —E.
Any sequence of numbers 172 k

is called a solution to a Post Correspondence System.

x': i :I”:x' =) ':I”: i - .
i1 % REIRE Yy The Post's Correspondence Problem is the problem of determining whether a
Post Correspondence system has a solutions.

Example 1 : Consider the post correspondence system

{{aa,aab),(bb,ba),(abb,b)}

The list 1,2,1,3 is a solution to it.

Because

ARy By = A0 s

i Xi Vi
aabbaaabh =gabpagabl L aa aab
EoE R TR T T A 2 b b
aabbaaabb = aabbaaabb 3 abb ¥

(A post correspondence system is also denoted as an instance of the PCP)

Example 2 : The following PCP instance has no solution

[Xi Yi
1 cah cict
2 o b

x
This can be proved as follows.(i ,}*‘g) cannot be chosen at the start, since than the LHS and RHS would
1 1 .x
differ in the first symbol (€ in LHS and '# " in RHS). So, we must start with (7.2 . The next pair must be
x
I: 2’"}?2) so that the 3 rd symbol in the RHS becomes identical to that of the LHS, whichiis a . After this

x
step, LHS and RHS are not matching. If Ii 1=J’1) is selected next, then would be mismatched in the 7 th symbol

x
(¥ in LHS and & in RHS). If I: 3’“}?2) is selected, instead, there will not be any choice to match the both side in
the next step.

Example3 : The list 1,3,2,3 is a solution to the following PCP instance.

i Xi Yi
1 1 101
2 10 00
3 011 11

The following properties can easily be proved.

Proposition The Post Correspondence System
[(ai',af'),(hah)(a!ai)]

dksuch that iy = j, or
Jicand! such thati, » 7, andi, < j

has solutions if and only if

Corollary : PCP over one-letter alphabet is decidable.

=z 2
Proposition Any PCP instance over an alphabet Z with | | is equivalent to a PCP instance over an

alphabet I" with |1"| =2

Proof : Let 2= {al’ﬂﬂf'ﬁﬂk}:k > 2.

0,1 . i< :
Consider { ’ }We can now encode every @ €x18i Lk as 1071

“any PCP instance over Z will now
have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance over I

Theorem : PCP is undecidable. That is, there is no algorithm that determines whether an arbitrary Post
Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability of PCP. Since
halting problem of TM is undecidable (already proved), This reduction shows that PCP is also undecidable. The
proof is little bit lengthy and left as an exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free languages are
undecidable. To prove this we reduce the PCP to each of these problem. The following discussion makes it
clear how PCP can be used to serve this purpose.

& 2| &y, PR
Let {[! ,}’1) I: 2 ;v‘g) I: Y)} be a Post Correspondence System over the alphabet 2 We construct
two CFG's G, and G, from the ordered pairs x,y respectively as follows.

G:r = I:j";;’zwﬂ’gx) and

6, -(¥,%, 5,5,

where

G, - (4,7, 5,.5,)

N, ={5) and ¥, ={5,}
z, =%, = ZU{L2,.a},

Po={8, = xS, S, > xif=12 4

g =8, = 28,4 8, > rif =124

it is clear that the grammar & generates the strings that can appear in the LHS of a sequence while solving
the PCP followed by a sequence of numbers. The sequence of number at the end records the sequence of

strings from the PCP instance (in reverse order) that generates the string. Similarly, ~* generates the strings
that can be obtained from the RHS of a sequence and the corresponding sequence of numbers (in reverse
order).

Now, if the Post Correspondence System has a solution, then there must be a sequence

Iiy. .1, 64
Ay dy, Ay Ty -y
8
According to the construction of & and *

.
S"_F? HE X Gk - B and

.
Sy ?J’i,)’g B R |
o

In this case

Xy Xy o Kyl iy T O BBy bl = wisay)

L(G

¥

)and we L[G

=
Hence , W -") implying

LGINL(G,) = ¢

we L(GINL(G,)

Conversely, let

-

. Wy E X . 35 U .
Hence, w must be in the form w,w, where ! and w, in a sequence "% %1 "¥l(since, only that kind of

i
strings can be generated by each of % and 7).

) WS XK X S WOV e W .
Now, the string “%"& M, Ty is a solution to the Post Correspondence System.

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s whose intersection is
nonempty. The following result is a direct conclusion of the above.

L[GJHL[GE) = g7

Theorem : Given any two CFG's G; and G, the question "Is " is undecidable.

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This would imply that
PCP is decidable as shown below.

& _ .
For any Post Correspondence System, P construct grammars Gﬂ and ~* by using the constructions

elaborated already. We can now use the algorithm A todecide whether and

L[Gx)m(t_’;y);-sg&

Thus, PCP is decidable, a contradiction. So, such an algorithm does not exist.

G

iF
If “2and ~*are CFG's constructed from any arbitrary Post Correspondence System, than it is not difficult to

L I:Gx) L (G}']
show that and are also context-free, even though the class of context-free languages are not
closed under complementation.

L{G), L(Gy) _ o _
and their complements can be used in various ways to show that many other questions
related to CFL's are undecidable. We prove here some of those.

& &G,
Theorem : Foe any two arbitrary CFG's ! %" the following questions are undecidable

L(3)=%7

i Is

then,

LI =g7
Hence, it suffice to show that the question “Is I: 1) 1. is undecidable.

L=L(G)UL(G

L L
Since, ":I and (y) are CFl's and CFL's are closed under union,) is also context-

L=L(G)NL(G,)

free. By DeMorgan's theorem,

LI =
If there is an algorithm to decide whether [1) ¢ we can use it to decide whether

L= L[ijﬂL(Gy) =g

or not. But this problem has already been proved to be undecidable.

L=
Hence there is no such algorithm to decide or not. I: lj 4

_ 8 _
Let P be any arbitrary Post correspondence system and G and ~*are CFg's constructed from the pairs of
strings.

L=L(GIUL(G,

) must be a CFL and let G;generates L,. That is,

L= 2(G) = L(G)UL(G,) = L(G)NL(G,)

we L{G)NL(G,)

by De Morgan's theorem, as shown already, any string, represents a solution to the

LG
PCP. Hence, [1) contains all but those strings representing the solution to the PCP.

L(Gy) =(ZU{L2,.a))

Let for same CFG G,

LIG)=4(C
It is now obvious that I: lj [2) if and only if the PCP has no solutions, which is already proved to be

LIG=LC
undecidable. Hence, the question “Is (G)=2(2)’?“ is undecidable.

G U2

Let ~lbe a CFG generating the language
LG UL(a

»

and G, be a CFG generating

F
) where G:* and ¥ are CFG.s constructed from same arbitrary instance of PCP.

LG ci(G) iff L[Gx)UL(GyJ N [EU{LEV"”})*

i.e. iff the PCP instance has no solutions as discussed in part (ii).
Hence the proof.

Theorem : It is undecidable whether an arbitrary CFG is ambiguous.

F
Proof : Consider an arbitrary instance of PCP and constructthe CFG's % and ¥ from the ordered pairs of

strings.

F iF
We construct a new grammar G from ~2and ~* as follows.

F=(N.5 P.5)

where

N={55.5]}

o
Z.is same as that of G, and Y.

P={BUBU[{s 5,5}

This constructions gives a reduction of PCP to the --------- of whether a CFG is ambiguous, thus leading to the
undecidability of the given problem. That is, we will now show that the PCP has a solution if and only if G is
ambiguous. (where G is constructed from an arbitrary instance of PCP).

. A EE M . .
Only if Assume that '1’"2* “kis a solution sequence to this instance of PCP.

. , AV T FUEEE |
Consider the following two derivation in "1*"2* "k

1 1 1
Ry = R =% Ay = %%, Sy iady

-

= 5%, Sixa i

1
:.; R R L S

1 1 1
Ry ? Sy ? X, Syzl :G“ b yéqSyzzzl
TEY W Sl
1

;G\}yjlyji o '-}?iHu}r.E,I-.EI..I:.—l - .:"';23.1

But ,

Ty Ay Ry TNy, T y. SBINCE I Tg o0y

(xz'.xa "'xa)

is a solution to the PCP. Hence the same string of terminals has two derivations. Both these

derivations are, clearly, leftmost. Hence G is ambiguous.

If It is important to note that any string of terminals cannot have more than one derivation in ~2 and

* Because, every terminal string which are derivable under these grammars ends with a sequence of integers

% PR % S L
i1 "FlThis sequence uniquely determines which productions must be used at every step of the derivation.

. . . we L[o o
Hence, if a terminal string, [) , has two leftmost derivations, then one of them must begin with the
step.

. . . F
then continues with derivations under ~*

N . . i B0, q -y 2
In both derivations the resulting string must end with a sequence # #1 "#lfor same P = 1The reverse of
this sequence must be a solution to the PCP, because the string that precede in one case is

B AV M

. X
W% and * in the other case. Since the string derived in both cases are identical, the

3,1, 1, .1
sequence 2T LR
must be a solution to the PCP.

Hence the proof

Class p-problem solvable in polynomial time:

A Turing machine M is said to be of time complezity T'(n) [or to have “running
time 7'(n)”] if whenever M is given an input w of length n, M halts after making
at most T'(n) moves, regardless of whether or not M accepts. This definition
applies to any function T(n), such as T(n) = 50n® or T(n) = 3" + 5n%; we
shall be interested predominantly in the case where T'(n) is a polynomial in n.
We say a language L is in class P if there is some polynomial T'(n) such that
L = L(M) for some deterministic TM M of time complexity T'(n).
Non deterministic polynomial time:
A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for some
polynomial p is said to be non polynomial time NTM.
e NP is the set of languags that are accepted by polynomial time NTM’s
e Many problems are in NP but appear not to be in p.
e One of the great mathematical questions of our age: is there anything in NP that is not in p?

NP-complete problems:
If We cannot resolve the “p=np question, we can at least demonstrate that certain problems in NP are

the hardest , in the sense that if any one of them were in P, then P=NP.
e These are called NP-complete.
o Intellectual leverage: Each NP-complete problem’s apparent difficulty reinforces the belief
that they are all hard.
Methods for proving NP-Complete problems:
e Polynomial time reduction (PTR): Take time that is some polynomial in the input size to
convert instances of one problem to instances of another.
e IfP1PTRtoP2andP2isinPlthesoisPl.
e Start by showing every problem in NP has a PTR to Satisfiability of Boolean formula.
e Then, more problems can be proven NP complete by showing that SAT PTRs to them
directly or indirectly.

